基礎分野:基礎物理

スポンサーリンク

基礎物理

基礎用語

基礎用語
試18-12、17-17、16-16、16-46、15-8、14-1、14-2、13-1、13-3、12-2、10-9、9-9、9-19、8-1、7-1、7-3、7-4、7-9、7-15、6-15、6-16、5-2、5-6、5-9、1-31参考書籍:完全解説P60、P93、P106、P140、P343、P525 集中講習P86T1緩和・スピン-格子緩和とも呼ばれる・T1(スピン-格子緩和時間)  縦磁化が初期磁化の63.2%になる時間・T1値は磁場強度、TRの値が高くなるほど大きな値になる(正比例はしない)・分子の運動周波数が共鳴周波数に最も近い場合に最短のT1値になる・スピン系のエネルギーはT1緩和によって変化する・T1値≧T2値≧T2*値(純水のみ同じ)・脂肪のT1値<水のT1値・縦緩和速度 ≦ 横緩和速度T2緩和・スピン-スピン緩和とも呼ばれる・T2緩和の原因  双極子-双極子相互作用による局所磁場揺動・T2(スピン-スピン緩和時間)  横磁化が初期磁化の36.8%になる時間・T2値  分子の運動周波数が大きいほど長くなる  揺動のゆるやかな巨大生体分子ほど短い  共鳴周波数幅に...

核磁気共鳴 / 3T装置

核磁気共鳴 / 3T装置
核磁気共鳴試17-6、15-6、11-1、10-4、9-4、5-6、2-11、1-11参考書籍:完全解説P343、P95、P96、P85概要・陽子、中性子がともに同じかつ偶数であればすべてのスピンが対をつくるため磁性はもたない・核磁気共鳴現象を示す核種の例(過去出題分)核種スピン量子数核種スピン量子数1H1/225Mg5/22H127Al5/213C1/231P1/214N139K3/215N1/241K3/219F1/243Ca7/223Na3/2129Xe1/2上記以外は完全解説P17表1-1-1を参照・横緩和時間は共鳴周波数幅が広いほど短縮する・常磁性物質が持つ不対電子の磁気モーメントはプロトンの磁気モーメントの658倍・双極子間相互作用(DDI:dipole-dipole interaction)緩和の基本メカニズム水素原子核pが水素原子核qに及ぼすDDIの強さDDI ∝ μ2/r6 μ:磁気モーメントr:2つの原子間距離ラーモアの式試18-7、14-1、9-19、5-5・歳差運動の共鳴周波数ff=(γ・B0)/2π ω=γ・B0γ:磁気回転比(核種に固有の値がある)B0:静磁...

磁場均一性

磁場均一性
試:18-6参考HP①  参考HP②・静磁場強度の空間的な均一の程度・DSV (diameter spherical volume)で表される→この値が小さいほど磁場均一性が高い→中心点と半径(cm)の球体表面上の磁場強度の誤差をppmで示す例) 0.3ppm/60cmDSVの3.0Tマグネット→磁場中心から半径30cmの領域内での磁場強度差が0.0009mT以内である

k空間と画像構成/ 磁性

k空間と画像構成/ 磁性
試18-12、18-13、17-16、16-12、16-10、15-11、14-10、10-3、5-3、4-10参考書籍:完全解説P175、P182,P190、P192,P196 撮像技術P28、77k空間と実空間・k空間は画像を構成する様々な空間周波数をもつ正余弦波のフーリエ係数を表す・エルミート対称(複素共役対称の性質)がある・k空間の座標軸は波数である・実信号は偶関数、虚信号は奇関数である・実空間とk空間は互いにフーリエ変換の関係にある・磁場勾配による位相変化は磁場勾配の強さに依存する・実空間のFOVが大きさとk空間の空間周波数成分の細かさ(Δk)は反比例する・k空間の大きさ(波数範囲)LOKと実空間のボクセルサイズは反比例する・k 空間の中央に充填するエコーのTEを実効TEと呼ぶk空間の充填SE法、FSE法、GRE法EPI法・撮像時間が最速長方形マトリクス・位相エンコード間隔は等しい・位相エンコード数が少ない・マトリクスサイズは増大(空間分解能は低下)・撮像時間は短縮・SNRは上昇SENSEシーケンス・位相エンコードを間引いているため間隔が大きく、本数が少ない(位相方向のFOV...

磁気シールド

磁気シールド
試:20-40・RF磁場は導電体で覆うと遮蔽できる・遮蔽された静磁場内の均一性は高くなる磁気シールドの種類〇アクティブシールド・静磁場磁石の外側に電磁石を設置して、逆向きの磁場で漏洩磁場を打ち消す・超伝導磁石近傍の磁場勾配が高くなる〇パッシブシールド・強磁性体を用いた磁気シールド・MRI装置を鉄製シールドで覆い、磁束を閉じ込める・高透磁率・低保磁力の素材が適している

 

 

撮像条件

撮像条件
フリップ角試8-1参考書籍:完全解説P63フリップ角θ = γ・B1・tγ:磁気回転比B1:RFパルス強度γ・B1:RFパルスによる歳差運動の周波数t:RFパルスの照射時間FOV試16-13、7-14、7-30、9-9、5-9参考PDFFOV=BW/(γ×G)BW:受信バンド幅γ:磁気回転比G:傾斜磁場強度スライス厚試18-8、16-11、14-11、1-2、2-2参考書籍:完全解説P492~スライス厚Δz=BW/(γ×Gz )BW:送信バンド幅γ:磁気回転比Gz:スライス選択傾斜磁場強度送信バンド幅BWの励起RFパルスを照射すると、設定したBWの範囲内のプロトンが励起され共鳴する 傾斜磁場(空間磁場勾配)試19-46、16-11、16-46、14-8、14-9、14-11、14-32、14-33、13-33、12-33、12-34、9-22、7-23参考書籍:完全解説P157,165,169,P474~489~・磁場勾配により位相差を生じる・位相エンコードステップの最大勾配磁場の強度は 位相差が±πを超えないように設定する・傾斜磁場は磁気モーメントの位相分散(dephasing)を伴...

画質への影響

画質への影響
表面効果試20-11、5-40、8-36参考書籍:完全解説P352・石灰巣に高分子が捕捉されて、動きが制限されてT1が短縮し、T1WIで高信号を示す現象・石灰化の表面積が大きいほどT1短縮効果が大きい例)T1WIやPDWIで膝関節半月板の断裂面が高信号になる※「石灰巣」を「粘調な蛋白質溶液」に置き換えると「高分子水和効果」というMT効果試18-11、18-28、16-16、14-1参考書籍:完全解説P341、撮像技術P255・自由水の信号が受けた変化を通して高分子や高分子に結合した水の1Hを、間接的に観察する・MTパルスの使用により生じる・TOF-MRAによる抹消血管の描出能は向上する・Gd 造影剤の造影効果を向上させる・磁化移動のこと・適当なオフセット周波数のRFパルスを照射したとき、飽和した水素原子核の磁化が、ゆるく結合する水分子中の水素原子核のスピン系に移動すること・コントラストの低下につながる・観察法としてオンレゾナンス法とオフレゾナンス法がある・On-resonance法でのMTパルスは横緩和時間の差を利用して結合水の磁化を飽和させる・高速SE法はSE法より影響が強い・高速S...

 

 

SE法 / SSFSE法

SE法 / SSFSE法
SE法試18-18、14-17、11-13、10-20、8-14、6-14、5-18参考PDF概要・磁場の不均一に強い・SE法で撮像する画像の種類→ 「T2WI」「FLAIR」「プロトン密度強調画像」「T1WI」・180°パルスは縦磁化成分と横磁化成分を反転させる・CPMG法を用いたSE法→ 180°パルスが不正確でも偶数番エコーは正確なT2減衰を示す→ 一度に多数のTEの異なったスピンエコー信号が得られる・SE法の信号強度SISI∝ρ×(1-exp(-TR/T1))×exp(-TE/T2)  (ただしTR≫TEの場合)ρ:プロトン密度T1:縦緩和時間T2:横緩和時間TR:繰り返し時間TE:エコー時間シーケンスチャートTEはチャート内のTの2倍の時間180°パルスのみを取り除くとGRE法になる流速補正用勾配が付加されているAとBの面積は等しい3D高速SE法試18-18、8-14、6-14・再収束パルス角を小さくする→SARは低下SNRは低下画像コントラストは低下・再収束パルスを非選択的パルスに変更した場合、最短エコー間隔が短くなる・低いRFAではETLを長くするとT2緩和時間を遅らせる...

GRE法

GRE法
1.GRE法の特徴試20-12、20-13、20-14、20-19、19-11、16-15、12-10、11-5、10-23、9-9、9-26、8-26、8-3、6-9、5-14参考:完全解説P257.P323~326~、撮像技術P91、259、264、260参考PDF・180°パルスを使用しない →TRの短縮により短時間撮像が可能 →SNR低下のためフリップ角を小さくして補償する →磁化率の影響を鋭敏に受ける →T2緩和と磁場の不均一の影響を合わせたT2*減衰となる・コントラストはFAにより変化する T1WIを撮像する際は,FA(flip angle)を90°よりも小さくする T2*WIを撮像する際は30°以下の小さいFAを用いる・造影検査では、TEはin phaseもしくは脂肪抑制を併用する・信号強度はピクセルサイズの影響を受ける・静磁場強度が高くなる程、opposed phaseとin-phaseの間隔は小さくなる・3個のαパルスを異なった間隔で印加すると3個のFIDと5個のエコーが形成される・TRを短縮するとSSFPになる・Ernst angle:信号強度が最大となるフリップ角...

EPI法

エコープラナー法 (Echo-Planar Imaging:EPI)
試:18-21参考HP①  参考PDF①・位相方向への位相誤差が蓄積しやすい・ブラーリングによるぼけが画像に現れる・ケミカルシフトアーチファクトは位相方向に現れる・・T2フィルタリング効果を生じる

高速イメージング / IR法

高速イメージング / IR法
高速イメージング試20-10、20-20、19-14、16-12、15-17、15-18、15-19、13-41、12-19、8-12、5-20、4-39参考書籍:完全解説P201,P203~、P212~、撮像技術P1001.パラレルイメージング概要・k空間を間引いて信号を取得・複数コイルの空間的な感度差を利用してk空間座標を埋める・位相方向の画像展開を行う・複数のコイルを間引く方向と平行に配置する・g因子はコイル感度分布に依存する・ボリュームコイルよりサーフェイスコイルのほうが有利SENSE法(sensitive encoding)・k空間の外での画像上でのデータ操作(折り返しを戻す)によるParallel imaging・折り返しアーチファクトのある画像を再構成し、コイル感度分布の情報から折り返しを展開する・過程①事前にコイル感度分布を収集②k空間の位相エンコードラインを間引いて信号取得③フーリエ変換にて各コイルの折り返し画像が再構成される④各コイル感度分布の情報から折り返しを展開する・SENSE法のメリット①時間分解能が向上②撮像範囲の拡大③モーションアーチファクトの低減④EPI...

GRASE法

GRASE法
試:20-12、19-8参考:臨床画像 4月増刊号(Vol.35 2019) P170   これで完璧 MRI P117・呼吸停止下での3D-MRCP撮像に用いられる →15~18秒程度の高速撮像 →きわめて強いT2コントラスト画像・FSE法との比較 SARが低い→180°パルスが大幅に減らせるため 磁化率効果に鋭敏 MTC効果、Jカップリングが抑制される MRCP撮像において濃縮胆汁の描出が良好 →短いTEのため、T2減衰による信号低下の影響を抑えられる・Gd造影剤投与後の撮像では、造影効果により、背景信号や静脈の信号が高くなるため観察が困難となる

 

 

MR血管撮像

MR血管撮像
MRA:bright blood MRA試20-15、19-15、19-20、18-16、18-29、17-11、17-17、17-22、16-17、16-36、15-26、14-49、13-36、13-49、11-3、9-10、6-12、5-4、5-11、5-29参考書籍 完全解説P595,581  撮像技術P117,122,219,230,249,307参考PDF①  参考PDF②参考PDF③  参考PDF④タイムオブフライト法(TOF:time of flight)○概要・GRE法を用いて流入(インフロー)効果を利用・TRごとにαパルスを与えると、新しくその部分に入る血液は、縦磁化はずっと回復した状態と同じとみなせ、これを短いTRにて画像にすると血管だけを強調できる・血管以外のT1値の短い物質ほど高信号・得られた画像は,MIP処理され三次元的に観察される・流入効果を高めるため、目的の血管に垂直な断面にする・脳血流の低下が予想される場合、TRの延長で血管の描出能が向上する・エコー時間を短縮すると位相分散を少なくし、乱流の影響が減少する →血管内腔の高信号が得られる○撮像法a) 2D...

脂肪抑制

脂肪抑制
試20-12、20-13、17-9、17-10、17-17,16-8、15-12、14-19、13-22、9-5、9-16、7-2、6-2、6-10、5-13、2-5、1-5参考書籍:集中講習P103参考PDF①  参考PDF②参考PDF③  参考PDF④参考PDF⑤①選択的脂肪抑制法水と脂肪の周波数差を利用した方法(Fat SAT、Chem SAT、CHESS、SPECIAL、SPIR(SPAIR))○原理・同じプロトンでも脂肪と水では共鳴周波数が異なる(化学シフト)・脂肪は水よりも3.5ppm(1.5Tの静磁場では3.5ppm=224Hz)低い周波数で共鳴する・脂肪の共鳴周波数のみに狭いバンド幅のRFパルスを照射した後、スポイラー傾斜磁場で位相分散させてからデータ収集を行う・脂肪抑制パルス(pre-saturation pulse)をかけることで、脂肪プロトンの信号を落とし、水プロトンのみの画像を取得する・メチル基、メチン基、メチレン基の信号が抑制される・不飽和脂肪酸の共鳴周波数は水に近いため抑制されない・静磁場強度が高い方が有利→水と脂肪の周波数差が大きいため・脂肪抑制効果は静磁...

拡散強調像(DWI) / ファンクショナルMRI(fMRI)

拡散強調像(DWI) / ファンクショナルMRI(fMRI)
拡散強調像(DWI)試20-9、19-12、19-36、18-10、18-20、17-8、17-12,17-13,17-22,17-28,17-38,16-34、15-28、14-2、14-21、12-15、11-10、9-8、9-15、7-13、4-4、2-13、1-13参考書籍:完全解説P268~ 、 撮像技術P125~参考PDF①  参考PDF②  参考PDF③参考PDF④  参考PDF⑤  参考PDF⑥参考PDF⑦  参考PDF⑧  参考HP① 概要・水分子の拡散の大きさとその方向を知ることができる・分子運動が少ない程、高信号(腫瘍内容など)・同時に3方向に拡散運動検出傾斜磁場(MPG:motion probing gradient)を付加することで 拡散の異方性をなくすことができる・水分子拡散の確率密度分布は生体内で正規分布しない・EPI法はスピンエコー法に比べバンド幅が広い→ ケミカルシフトアーチファクトの影響が小さい・EPI法によるDWIでは縦緩和の影響を排除するためにTRを長く設定する・DWIBS:全身の拡散強調背景抑制法・IVIM(intra voxel incohe...

T2*強調画像

T2*強調画像
試:19-18概要・T2WIをSE法ではなくGRE法やEPI法で撮像したもの・局所的な磁場の不均一による磁化率差を強調した撮像法・局所的な磁場の不均一に敏感T2*WIの意義頭頸部領域での応用①ヘモデジリン沈着の検出ヘモデジリン(局所磁場を乱す物質)を低信号として検出する→陳旧性出血や脳実質の海綿状血管腫の検出に役立つ→脳内における無症候性微小出血の検出や過去の出血巣の確認に優れる②頭蓋内出血の描出CTで高濃度を示す時期の新しい出血は主にデオキシヘモグロビンを反映し低信号に描出される③functionalMRIへの応用脳の活動によって、血液中のオキシヘモグロビンとデオキシヘモグロビンのバランスが変化する際に生じる磁場の不均一を検出し低信号を描出する肝臓SPIOにおける応用・SPIOを用いた造影MRIではT2*WIが第一選択となる・鉄剤であるSPIOを取り込んだ正常肝実質では磁場の不均一が生じ、低信号を示す骨・関節領域での応用・基本的にはT2WIが強調されたものとして見る・急性炎症や関節液貯留は高信号・脂肪髄の信号が抑制されることで骨髄は低信号を示す →骨挫傷、骨髄炎、腫瘍の検出能が向上す...

MR灌流強調画像(perfusion weighted imaging:PWI)

MR灌流強調画像(perfusion weighted imaging:PWI)
概要試18-26、17-14、17-39、16-35、16-37、15-30、14-23、13-23、10-16、8-5、7-5、6-5参考書籍:完全解説P624~P639~P645MRI評価と解析参考PDF①  参考PDF②  参考PDF③参考PDF④  参考PDF⑤  参考PDF⑥参考PDF⑦参考HP①    参考HP②    参考HP③ 参考HP④ ・脳血流量(CBF)、脳血液量(cBV)、平均通過時間(MTT)が得られる・関心領域内の微小循環による信号強度変化を経時的に画像化する・灌流(perfusion) 組織の毛細血管における血流動態  単位時間あたりに入れ替わる血液量で表される(ml/min/100g)撮像法1.DSC-PWI (dynamic susceptibility contrast PWI)○手法・Gd造影剤を血管内急速注入後のT2*WI(通常はEPI法)を 連続撮像する 造影剤の磁化率効果により血管内外の信号強度差が生じる そのT2短縮効果による信号上昇を継時的に観察する 組織の信号強度低下を捉えた曲線から、組織の血液灌流を評価する・造影剤投与前後のT2*緩和...

SWI

SWI(susceptibility weighted image:磁化率強調像)
試20-26、19-18、18-9、17-17、17-38、15-2、15-13、13-23、13-45参考書籍:完全解説P295~参考PDF①概要・臨床・2DGRE法によるT2*WIに位相情報を加えて組織の磁化率の差異をより鋭敏に強調した3DGRE法で撮像される・脳静脈血(デオキシヘモグロビン)、出血(ヘモジデリン、メトへモグロビン)、鉄沈着(フェリチン)、石灰化(カルシウム)等を低信号として高精細に描出する→これらの常磁性物質は生体内で局所磁場を増強させ、磁化の差異をもたらす・脳出血、脳梗塞、頭部外傷、脳静脈奇形、脳腫瘍等の診断に有用・微量な鉄沈着や酸素飽和度(デオキシヘモグロビン量)の違いを描出できる・磁化率効果の高い静脈構造を強調し、髄質静脈や深部静脈系が明瞭に描出される・静脈は位相変化が少ないため低信号に描出される・Gd系造影剤を用いると細い静脈が見えやすくなる・高濃度酸素を投与していると静脈を過小評価することがある・位相コントラスト画像はQp/Qs(肺循環体循環血流比)を測定できる・SWIでは動脈系は描出されない→3軸に流速補正を行うことで、磁化率による位相変化のみを反映し...

DTI

拡散テンソル画像(DTI)
参考PDF①   参考PDF②試20-28、19-12、17-13、15-28、8-8概要・水分子の拡散の方向と大きさを測定し、脳の白質神経線維の走行を可視化する・神経疾患の診断に有用・MPGの方向を変化させた複数の画像から脳や神経の拡散の異方性を表す画像・脳や脊髄の神経線維、髄鞘の方向性や規制する強度を画像化する・神経繊維などの障害物があると、それに沿った方向に拡散運動が制限される・白質神経路や軸索損傷の評価に用いる・最低6方向からのMPGパルスが必要FAマップ表示でのコントラストFA値:異方性の強さ(神経繊維の方向)を示す 値:0(等方的:自由拡散) ~1(異方的:制限拡散)  等方性拡散のFA=0  異方性拡散のFA=1に近い大きな値高FA:白質線維が密な部分や方向性が強い線維束高信号を示す例)白質、脳梁、内包低FA:拡散が等方的な部分や病変、神経線維の損傷など中等度~低信号を示す例)灰白質、脳脊髄液(FA=0)、脳梗塞、外傷(詳細)FAとADCは以下のように定義されるλ1、λ2、λ3 :各方向のベクトルの固有値以下のように表すこともあるAD(axial diffusivity)...

QIBA

QIBA (Quantitative lmaging Biomarkers Alliance)
参考PDF試:20-41、17-8・画像で計測される種々の定量可能な計測値について、装置によらずに定量的評価が可能となるようにすることにより、画像をバイオマーカーとしても活用しようとする試みである・拡散強調像の標準化QIBAではポリピニルピロリドン(PVP)を用い、定量値が1.1×10-3mm2/sとなるice-water phantomを使用する

死後画像診断(オートプシー・イメージングAutopsy imaging; Ai)

死後画像診断(オートプシー・イメージングAutopsy imaging; Ai)
試20-11、19-6参考PDF①   参考PDF②   参考PDF③参考PDF④   参考PDF⑤〇温度が画像に与える影響死後MRIは体温によって信号強度やコントラストが変化し、臨床画像では見慣れないコントラストを呈する場合がある・FLAIRの水信号抑制不良・T2WIの脂肪信号の抑制・常磁性体の信号変化:大脳基底核、肝臓などの臓器にはフェリチン、マンガンなどの常磁性体の蓄積が多い。死後画像ではそれらの部位の信号変化が特に目立つ〇温度依存パラメータ・熱平衡磁化M0・縦緩和時間T1・横緩和時間T2・拡散係数・化学シフト・共鳴周波数・ADC値:生体と比較すると死体のADC値は、1/2~1/4程度まで減少する

対策ノートの使い方

オレンジ色の場所を覚える
  オレンジの文字暗記用赤シート消えます


・★マーク
:特に重要な箇所

・出題年数の見方
:(12-22、5-12)
 12-22
 → 第12回の22問目

 5-12
 → 第5回の12問目

カテゴリ別に調べたい場合

・PC
:左カラムの「カテゴリ
 または
 トップページに戻って各教科の「このカテゴリをもっと読む

・スマホ
:下タブ右側の「カテゴリ
 または
 下タブ左側のホームボタンから各教科の「このカテゴリをもっと読む

調べたい単語がある場合

・PC
:左カラムの「サイト内を検索」に単語を入力

・スマホ
:下タブ中央の「サイト内を検索」に単語を入力

error: Content is protected !!